Android Application BASIC | Android Wale Bhaiya - ANDROID WALE BHAIYA
Saturday, 22 August 2020

Android Application BASIC | Android Wale Bhaiya

ANDROID APPLICATION BASIC (P-3)




Android Fundamentals

Android apps can be written using Kotlin, Java, and C++ languages. The Android SDK tools compile your code along with any data and resource files into an APK, an Android package, which is an archive file with a .apk suffix. One APK file contains all the contents of an Android app and is the file that Android-powered devices use to install the app.

Each Android app lives in its own security sandbox, protected by the following Android security features:

  • The Android operating system is a multi-user Linux system in which each app is a different user.

  • By default, the system assigns each app a unique Linux user ID (the ID is used only by the system and is unknown to the app). The system sets permissions for all the files in an app so that only the user ID assigned to that app can access them.

  • Each process has its own virtual machine (VM), so an app's code runs in isolation from other apps.

  • By default, every app runs in its own Linux process. The Android system starts the process when any of the app's components need to be executed, and then shuts down the process when it's no longer needed or when the system must recover memory for other apps.

The Android system implements the principle of least privilege. That is, each app, by default, has access only to the components that it requires to do its work and no more. This creates a very secure environment in which an app cannot access parts of the system for which it is not given permission. However, there are ways for an app to share data with other apps and for an app to access system services:



  • It's possible to arrange for two apps to share the same Linux user ID, in which case they are able to access each other's files. To conserve system resources, apps with the same user ID can also arrange to run in the same Linux process and share the same VM. The apps must also be signed with the same certificate.

  • An app can request permission to access device data such as the device's location, camera, and Bluetooth connection. The user has to explicitly grant these permissions. For more information, see the Android Developer official site.

App Components

App components are the essential building blocks of an Android app. Each component is an entry point through which the system or a user can enter your app. Some components depend on others.

There are four different types of app components:

  • Activities
  • Services
  • Broadcast receivers
  • Content providers

Each type serves a distinct purpose and has a distinct lifecycle that defines how the component is created and destroyed. The following sections describe the four types of app components.

android wale bhaiya

Each type serves a distinct purpose and has a distinct lifecycle that defines how the component is created and destroyed. The following sections describe the four types of app components.

Activities

An activity is the entry point for interacting with the user. It represents a single screen with a user interface. For example, an email app might have one activity that shows a list of new emails, another activity to compose an email, and another activity for reading emails. Although the activities work together to form a cohesive user experience in the email app, each one is independent of the others. As such, a different app can start any one of these activities if the email app allows it. For example, a camera app can start the activity in the email app that composes new mail to allow the user to share a picture. An activity facilitates the following key interactions between system and app:


  • Keeping track of what the user currently cares about (what is on-screen) to ensure that the system keeps running the process that is hosting the activity.

  • Knowing that previously used processes contain things the user may return to (stopped activities), and thus more highly prioritize keeping those processes around.
  • Helping the app handle having its process killed so the user can return to activities with their previous state restored.
  • Providing a way for apps to implement user flows between each other, and for the system to coordinate these flows. (The most classic example here is a share.)

An activity is implemented as a subclass of Activity class as follows −

public class MainActivity extends Activity {

}



Service

service is a general-purpose entry point for keeping an app running in the background for all kinds of reasons. It is a component that runs in the background to perform long-running operations or to perform work for remote processes. A service does not provide a user interface. For example, a service might play music in the background while the user is in a different app, or it might fetch data over the network without blocking user interaction with an activity. Another component, such as an activity, can start the service and let it run or bind to it in order to interact with it. There are actually two very distinct semantics services tell the system about how to manage an app: Started services tell the system to keep them running until their work is completed. This could be to sync some data in the background or play music even after the user leaves the app. Syncing data in the background or playing music also represent two different types of started services that modify how the system handles them:

  • Music playback is something the user is directly aware of, so the app tells the system this by saying it wants to be foreground with a notification to tell the user about it; in this case, the system knows that it should try really hard to keep that service's process running because the user will be unhappy if it goes away.
  • Regular background service is not something the user is directly aware of running, so the system has more freedom in managing its process. It may allow it to be killed (and then restarting the service sometime later) if it needs RAM for things that are of more immediate concern to the user.

Bound services run because some other app (or the system) has said that it wants to make use of the service. This is basically the service providing an API to another process. The system thus knows there is a dependency between these processes, so if process A is bound to service in process B, it knows that it needs to keep process B (and its service) running for A. Further, if process A is something the user cares about, then it also knows to treat process B as something the user also cares about. Because of their flexibility (for better or worse), services have turned out to be a really useful building block for all kinds of higher-level system concepts. Live wallpapers, notification listeners, screen savers, input methods, accessibility services, and many other core system features are all built as services that applications implement and the system binds to when they should be running.

 

A service is implemented as a subclass of Service class as follows −

public class MyService extends Service {

}


Broadcast receivers

broadcast receiver is a component that enables the system to deliver events to the app outside of a regular user flow, allowing the app to respond to system-wide broadcast announcements. Because broadcast receivers are another well-defined entry into the app, the system can deliver broadcasts even to apps that aren't currently running. So, for example, an app can schedule an alarm to post a notification to tell the user about an upcoming event... and by delivering that alarm to a BroadcastReceiver of the app, there is no need for the app to remain running until the alarm goes off. Many broadcasts originate from the systemfor example, a broadcast announcing that the screen has turned off, the battery is low, or a picture was captured. Apps can also initiate broadcastsfor example, to let other apps know that some data has been downloaded to the device and is available for them to use. Although broadcast receivers don't display a user interface, they may create a status bar notification to alert the user when a broadcast event occurs. More commonly, though, a broadcast receiver is just a gateway to other components and is intended to do a very minimal amount of work. For instance, it might schedule a JobService to perform some work based on the event with JobScheduler

A broadcast receiver is implemented as a subclass of BroadcastReceiver and each broadcast is delivered as an Intent object. 

A broadcast receiver is implemented as a subclass of BroadcastReceiver class and each message is broadcaster as an Intent object.

public class MyReceiver  extends  BroadcastReceiver {

   public void onReceive(context,intent){}

}


Content providers

content provider manages a shared set of app data that you can store in the file system, in an SQLite database, on the web, or on any other persistent storage location that your app can access. Through the content provider, other apps can query or modify the data if the content provider allows it. For example, the Android system provides a content provider that manages the user's contact information. As such, any app with the proper permissions can query the content provider, such as ContactsContract.Data, to read and write information about a particular person. It is tempting to think of a content provider as an abstraction on a database because there is a lot of API and support built into them for that common case. However, they have a different core purpose from a system-design perspective. To the system, a content provider is an entry point into an app for publishing named data items, identified by a URI scheme. Thus an app can decide how it wants to map the data it contains to a URI namespace, handing out those URIs to other entities that can in turn use them to access the data. There are a few particular things this allows the system to do in managing an app:

  • Assigning a URI doesn't require that the app remain running, so URIs can persist after their owning apps have exited. The system only needs to make sure that an owning app is still running when it has to retrieve the app's data from the corresponding URI.

  • These URIs also provide an important fine-grained security model. For example, an app can place the URI for an image it has on the clipboard but leaves its content provider locked up so that other apps cannot freely access it. When a second app attempts to access that URI on the clipboard, the system can allow that app to access the data via a temporary URI permission grant so that it is allowed to access the data only behind that URI, but nothing else in the second app.


Content providers are also useful for reading and writing data that is private to your app and not shared.


A content provider is implemented as a subclass of ContentProvider and must implement a standard set of APIs that enable other apps to perform transactions. For more information, see the Content Providers developer guide.


A unique aspect of the Android system design is that any app can start another apps component. For example, if you want the user to capture a photo with the device camera, there's probably another app that does that and your app can use it instead of developing an activity to capture a photo yourself. You don't need to incorporate or even link to the code from the camera app. Instead, you can simply start the activity in the camera app that captures a photo. When complete, the photo is even returned to your app so you can use it. To the user, it seems as if the camera is actually a part of your app.


When the system starts a component, it starts the process for that app if it's not already running and instantiates the classes needed for the component. For example, if your app starts the activity in the camera app that captures a photo, that activity runs in the process that belongs to the camera app, not in your app's process. Therefore, unlike apps on most other systems, Android apps don't have a single entry point (there's no main() function).


Because the system runs each app in a separate process with file permissions that restrict access to other apps, your app cannot directly activate a component from another app. However, the Android system can. To activate a component in another app, deliver a message to the system that specifies your intent to start a particular component. The system then activates the component for you.


Activating components

Three of the four component typesactivities, services, and broadcast receiversare activated by an asynchronous message called an intent. Intents bind individual components to each other at runtime. You can think of them as the messengers that request an action from other components, whether the component belongs to your app or another.
An intent is created with an Intent object, which defines a message to activate either a specific component (explicit intent) or a specific type of the component (implicit intent).

For activities and services, an intent defines the action to perform (for example, to view or send something) and may specify the URI of the data to act on, among other things that the component being started might need to know. For example, an intent might convey a request for an activity to show an image or to open a web page. In some cases, you can start an activity to receive a result, in which case the activity also returns the result in an Intent. For example, you can issue an intent to let the user pick a personal contact and have it returned to you. The return intent includes a URI pointing to the chosen contact.

For broadcast receivers, the intent simply defines the announcement being broadcast. For example, a broadcast to indicate the device battery is low includes only a known action string that indicates battery is low.

Unlike activities, services, and broadcast receivers, content providers are not activated by intents. Rather, they are activated when targeted by a request from a ContentResolver. The content resolver handles all direct transactions with the content provider so that the component that's performing transactions with the provider doesn't need to and instead calls methods on the ContentResolver object. This leaves a layer of abstraction between the content provider and the component requesting information (for security).


There are separate methods for activating each type of component:

  • With Android 5.0 (API level 21) and later, you can use the JobScheduler class to schedule actions. For earlier Android versions, you can start a service (or give new instructions to an ongoing service) by passing an Intent to startService(). You can bind to the service by passing an Intent to bindService().


A content provider is implemented as a subclass of ContentProvider class and must implement a standard set of APIs that enable other applications to perform transactions.

public class MyContentProvider extends  ContentProvider {

   public void onCreate(){}

}


We will go through these tags in detail while covering application components individually in the upcoming tutorials.


Additional Components

There are additional components that will be used in the construction of the above-mentioned entities, their logic, and wiring between them. These components are −


  • Fragments- represent a portion of the user interface in an Activity.

  • Views- UI elements that are drawn on-screen including buttons, lists forms, etc.

  • Layouts- View hierarchies that control screen format and appearance of the views.

  • Intents- Message wiring components together.


  • Resources- External elements, such as strings, constants, and drawable pictures.


  • Manifest- Configuration file for the application.


Conclusion

I hope you enjoyed this article. Follow Android Wale Bhaiya to learn more new and amazing things about Android Development and Android.

 
Thanks for reading this article

#Androidwalebhaiya #Androiddevelopment

Android Application BASIC | Android Wale Bhaiya Reviewed by Ashutosh Singh on August 22, 2020 Rating: 5 ANDROID APPLICATION BASIC (P-3) Android Fundamentals

No comments: